Trig Review Solutions PHYS 2425

Phil Alcorn

September 2, 2025

1. Converting between radians and degrees

$$\theta_{\rm rad} = \theta_{\rm deg} \cdot \frac{\pi}{180}$$

$$\theta_{\rm deg} = \theta_{\rm rad} \cdot \frac{180}{\pi}$$

A. What is $\frac{pi}{2}$ radians in degrees?

ANS: 90°

B. What is 60° in radians?

ANS: $\frac{pi}{3}$

C. What is 2π radians in degrees?

ANS: Both 360° and 0°. This shows an important notion about the circular nature of angles.

Group Discussion: Why is $tan(90^{\circ})$ undefined? Why do we use radians?

ANS: $tan(90^{\circ})$ is undefined becase $cos(\theta) = 0$. There are a couple reasons why we use radians. However the main thing I expect students to notice is that the $arc\ length$ is the same as the angle (in radians) for the unit circle. That is, an angle of π radians creates an arc length of π units. This scales proportionately with r. We can conclude that when dealing with rotating objects, the distance traveled along the circumference is equal to:

$$x = r\theta$$

Where x is the arc length and r is the radius, and θ is in radians. s is sometimes used instead of x in this equation.

2. Usage of the three main trig functions

A. On the unit circle, what are the coordinates of the point at angle 210°?

ANS:
$$(\frac{-\sqrt{3}}{2}, \frac{-1}{2})$$

B. Compute $\sin(\pi/3), \cos(\pi/3), \tan(\pi/3)$.

ANS:
$$\frac{\sqrt{3}}{2}$$
, $\frac{1}{2}$, $\sqrt{3}$

C. Find $\sin(225^{\circ})$ and $\cos(225^{\circ})$.

ANS:
$$\frac{-\sqrt{2}}{2}$$
, $\frac{-\sqrt{2}}{2}$

D. Without a calculator, evaluate $\tan(300^{\circ})$.

ANS:
$$-\sqrt{3}$$

E. Simplify:
$$\frac{\sin \theta}{\cos \theta}$$
.

ANS: $tan(\theta)$

F. Solve for θ : $\tan \theta = 1$.

ANS: 45° or $\frac{pi}{4}$ radians

G. Solve $\sin \theta = \frac{\sqrt{3}}{2}$ for all solutions in $[0, 2\pi)$.

ANS: 60° , 120°

Group Activity: A force of 100 N is applied at a 60° angle above the horizontal. What are the horizontal and vertical components?

ANS: $100cos(60^{\circ})N\hat{i} + 100sin(60^{\circ})N\hat{j}$

3. Relevant Tables and Information

θ (rad)	θ (deg)	$\sin(\theta)$	$\cos(\theta)$	$\tan(\theta)$
0	0°	0	1	0
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	90°	1	0	undefined

Table 1: Common values of sine, cosine, and tangent in radians and degrees.

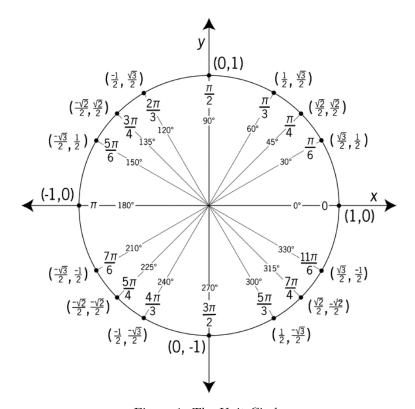


Figure 1: The Unit Circle