Trig Review PHYS 2425

Phil Alcorn

September 2, 2025

1. Converting between radians and degrees

$$\theta_{\rm rad} = \theta_{\rm deg} \cdot \frac{\pi}{180}$$

$$\theta_{\rm deg} = \theta_{\rm rad} \cdot \frac{180}{\pi}$$

- A. What is $\frac{\pi}{2}$ radians in degrees?
- B. What is 60° in radians?
- C. What is 2π radians in degrees?

Group Discussion: Why do we use radians? Why is $tan(90^{\circ})$ undefined?

2. Usage of the three main trig functions

- A. On the unit circle, what are the coordinates of the point at angle 210°?
- B. Compute $\sin(\pi/3), \cos(\pi/3), \tan(\pi/3)$.
- C. Find $\sin(225^{\circ})$ and $\cos(225^{\circ})$.
- D. Without a calculator, evaluate $tan(300^{\circ})$.

E. Simplify:
$$\frac{\sin \theta}{\cos \theta}$$
.

F. Solve for
$$\theta$$
: $\tan \theta = 1$.

H. Solve
$$\sin \theta = \frac{\sqrt{3}}{2}$$
 for all solutions in $[0, 2\pi)$.

Group Activity: A force of 100 N is applied at a 60° angle above the horizontal. What are the horizontal and vertical components?

3. Relevant Tables and Information

θ (rad)	θ (deg)	$\sin(\theta)$	$\cos(\theta)$	$\tan(\theta)$
0	0°	0	1	0
$\frac{\pi}{6}$	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
$\frac{\pi}{4}$	45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	90°	1	0	undefined

Table 1: Common values of sine, cosine, and tangent in radians and degrees.

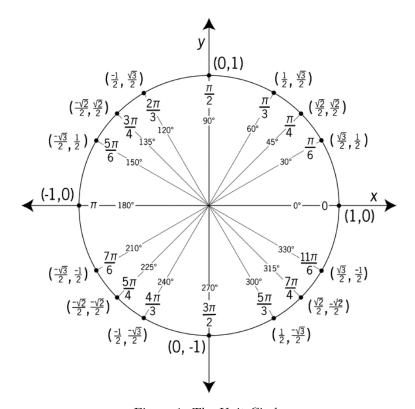


Figure 1: The Unit Circle